Transcription

MIN-FakultätFachbereich InformatikArbeitsbereich re1–Introduc;onSummerSemester2015Prof.Dr.- ‐Ing.H.SiegfriedS;ehl,BVDr.BenjaminSeppke,SAV

IP2:Lecture1- RMULTIMEDIAAPPLICATIONS Introduc;on Thedigi;zedimageanditsproper;es Datastructuresforimageanalysis Imagepreprocessing ImagecompressionIMAGEANALYSIS Segmenta;on Shapedescrip;on Mathema;calmorphology Textureanalysis Mo;onanalysisSCENEINTERPRETATION 3Dimageanalysis Objectrecogni;on Sceneanalysis Knowledge- ‐basedsceneinterpreta;on Probabilis;csceneinterpreta;on07.04.15University of Hamburg, Dept. Informatics2

IP2:Lecture1- ‐Introduc;onLessonsLearned(IP1- ‐ IP2)IMAGEPROCESSINGFORMULTIMEDIAAPPLICATIONS Introduc;on Thedigi;zedimageanditsproper;es Datastructuresforimageanalysis Imagepreprocessing ImagecompressionIMAGEANALYSIS Segmenta;on Shapedescrip;on Mathema;calmorphology Textureanalysis Mo;onanalysisSCENEINTERPRETATION 3Dimageanalysis Objectrecogni;on Sceneanalysis Knowledge- ‐basedsceneinterpreta;on Probabilis;csceneinterpreta;on07.04.15University of Hamburg, Dept. Informatics3

IP2:Lecture1- RY(2Weeks) FourierTransform Sampling ImageForma;on Noise 2Weeks) WindowedFT GaborTransform WaveletTransform JPEG2000VISUALFEATUREDETECTION(3Weeks) Differen;alGeometry ScaleSpace Edges StructureTensorandCorners07.04.15University of Hamburg, Dept. Informatics4

IP2:Lecture1- N(2Weeks) AffineandLinearTransforms ks) Bayes‘Rule(s) LinearandQuadra;cDiscriminantFunc;ons LearningORALEXAMS(TBA)07.04.15University of Hamburg, Dept. Informatics5

IP2:Lecture1- THE–PRIORTOCLASS–PREPAREDWILLEXCEL! TABOUTTED(TECHNOLOGY,ENTERTAINMENT,ANDDESIGN)! dofmath–justmasterastonytrail!07.04.15University of Hamburg, Dept. Informatics6

IP2:Lecture1- University of Hamburg, Dept. Informatics7

IP2:Lecture1- Y! rmitshardlysurvive!NOGOS! tyourfellowstudents! Mailingandsurfing! Twiddlingwithmobiles! NDSECRETARIATE([email protected] ‐hamburg.de)07.04.15University of Hamburg, Dept. Informatics8

IP2:Lecture1- earsonStudium,2005ComputerVision- ‐AModernApproachD.A.Forsyth,J.Ponce,Pren;ce- Woods,Pren;ce- eweg1996ComputerandRobotVision,Vol.I IIR.Haralick,L.G.Shapiro,Addison- 04.15University of Hamburg, Dept. Informatics9

IP2:Lecture1- black- ‐/whiteboardandflipchart!07.04.15University of Hamburg, Dept. Informatics10

IP2:Lecture1- canbeaccessedviahkp://kogs- ‐www.informa;k.uni- ‐hamburg.de/ willfind alinktoPDFcopiesoftheslides* alinktoproblemsheetsoftheexercisesand nly- ty of Hamburg, Dept. Informatics11

IP1:Lecture1- nalysis,andImageUnderstanding? SubfieldofComputerScience Historyofmorethan50years Richmethodology Interes;nginterdisciplinary;es Exci;nginsightsintohumanvision Importantapplica;ons .14University of Hamburg, Dept. Informatics12

IP1:Lecture1- ‐Introduc;onWhatis"ImageProcessing"? Transformingimagesasawhole "Bildverarbeitung"inanarrowsense val512 columns x 574 rows13.10.1432 columns x 35 rowsUniversity of Hamburg, Dept. Informatics13

IP1:Lecture1- ‐Introduc;onWhatis"ImageAnalysis"? Compu;ngimagecomponentsandtheirproper;es "Bildanalyse“ mputation of displacement vectors13.10.14University of Hamburg, Dept. Informatics14

IP1:Lecture1- ‐Introduc;onWhatis"ImageUnderstanding"? Compu;ngthemeaningofimages "Bildverstehen“ guagedescrip;on"Ein heller Opel biegt von der Hartungstraße in die Schlüterstraße ein. Er wartet,bis ein Fußgänger die Hartungstraße überquert hat. Auf der Schlüterstraße stehtein heller Ford vor der Ampel an der Hartungstraße. Ein Fußgänger geht auf demGehweg rechts neben der Schlüterstraße in Richtung Hartungsstraße. ."13.10.14University of Hamburg, Dept. Informatics15

IP1:Lecture1- standingBuster Keaton"The Navigator" (1924)Silent movie understanding requires more than object recognition:- common sense- emotionality- sense of humour13.10.14consequences for vision system architectureUniversity of Hamburg, Dept. Informatics16

IP1:Lecture1- ‐Introduc;onWhatis"PafernRecogniZon"? evectors cabletoothermodali;es "Mustererkennung“ control"A"Ax1 4.2 x2 2.7x [ 4.2 , 2.7 ]T13.10.14"not A""The unknown object is an A"University of Hamburg, Dept. Informatics17

IP1:Lecture1- ‐Introduc;onWhatis"ComputerVision"? ing,ImageAnalysis,ImageUnderstanding SameasMachineVision("Maschinensehen") omputer VisionComputer Graphicsimages13.10.14University of Hamburg, Dept. Informatics18

IP1:Lecture1- ioninbiologicalsystems: sion biologicalvision: solu;ons. irementsforbiologicalvision.Caution: Mimicking biological vision does not necessarily provide thebest solution for a technical problem.13.10.14University of Hamburg, Dept. Informatics19

IP1:Lecture1- ‐Introduc;onGeometryinHumanVisionFrasers SpiralZöllner s elboeuf1892Do we want a vision system to perceive like humans?13.10.14University of Hamburg, Dept. Informatics20

IP1:Lecture1- ‐Introduc;onHumanObjectPercepZon Grouping preferencesKanizsa s triangleCamouflage13.10.14University of Hamburg, Dept. InformaticsThe dalmatian21

IP1:Lecture1- ersity of Hamburg, Dept. Informatics22

IP1:Lecture1- ‐Introduc;onHumanFaceRecogniZonRichard NixonWho is who?Queen VictoriaCharlie ChaplinGraucho MarxJohn F. KennedyWinston Churchill13.10.14University of Hamburg, Dept. Informatics23

IP1:Lecture1- ‐Introduc;onComplexityofNaturalScenes 13.10.14University of Hamburg, Dept. cesreflectionsshadowsocclusionscontextinferences24

IP1:Lecture1- 4University of Hamburg, Dept. Informatics25

IP1:Lecture1- ity of Hamburg, Dept. Informatics26

IP1:Lecture1- 14University of Hamburg, Dept. Informatics27

IP1:Lecture1- ‐Introduc;onComputerVisionasanAcademicDiscipline rchgroupsincountriesallovertheworld. Thereexistsalargebodyofresearchresultstobuildon. StudyingComputerVisionisaprerequisitefor– thedevelopmentofstate- ‐of- ‐the- ‐artapplica;ons– corporateresearch– anacademiccareerImage Processing IWS 2013/14 RecentdevelopmentsofCogni;veVisionaimat– robustvisionsystemsAdvancedcourses– incorpora;ngspa;alandtemporalcontext– versity of Hamburg, Dept. Informatics28

IP1:Lecture1- nungNote: There are many regular conferences and workshopsspecialized on subtopics of Computer Vision, e.g. documentanalysis, aerial image analysis, robot vision, medical imagery13.10.14University of Hamburg, Dept. Informatics29

IP1:Lecture1- ‐Introduc;onImportantJournalsIEEE- sionandApplica;onsPRPakernRecogni;onIEEE- rsity of Hamburg, Dept. Informatics30

IP1:Lecture1- ‐Introduc;onImportantApplicaZonAreasI Industrialimageprocessing– processcontrol,– qualitycontrol,– geometricalmeasurements,. RoboZcs––––– .University of Hamburg, Dept. Informatics31

IP1:Lecture1- ‐Introduc;onImportantApplicaZonAreasII RemoteSensing–––– (Air- ‐andSpace- ues,Climateresearch,Defense,.DocumentAnalysis– Handwrikencharacterrecogni;on,– Layoutrecogni;on,– Graphemerecogni;on,. MedicalImageAnalysis– Imageenhancement,– Imageregistra;on,– Surgicalsupport,.13.10.14University of Hamburg, Dept. Informatics32

IP1:Lecture1- ‐Introduc;onImportantApplicaZonAreasIII ImageRetrieval– Imagedatabases,– Mul;modalinforma;onsystems,– Webinforma;onretrieval,. VirtualReality– Imagegenera;on,– Modelconstruc;on MobileApplicaZons– Automatedtransla;ons– FocusonFace,ShukeronSmile– ImagefilterslikeInstagram ,.13.10.14University of Hamburg, Dept. Informatics33

Buster Keaton "The Navigator" (1924) Silent movie understanding requires more than object recognition:- common sense - emotionality - sense of humour consequences for vision system architecture 13.10.14 University of Hamburg, Dept. Informatics 16